π-Conjugated organic donor–acceptor (D–A) type polymers are widely developed and used in electronic device. Among which, diketopyrrolopyrrole (DPP)-based polymers have received the most attention due to their high performances. The novel chromophores named 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP), benzodipyrrolidone (BDP) and naphthodipyrrolidone (NDP) are resemble DPP in chemical structure. IsoDPP is an isomer of DPP, with the switching position of carbonyl and amide units. The cores of BDP and NDP are tri- and tetracyclic, whereas isoDPP is bicyclic. π-Conjugation extension could result polymers with distinct optical, electrochemical and device performance. It is expected that the polymers containing these high-performance electron-deficient pigments are potential in the electronic device applications, and have the potential to be better than the DPP-based ones. IsoDPP, BDP, and NDP based polymers are synthesized since 2011, and have not receive desirable attention. In this work, the synthesis, properties (optical and electrochemical characteristics), electronic device as well as their relationship depending on core-extension or structure subtle optimization have been reviewed. The final goal is to outline a theoretical scaffold for the design the D–A type conjugated polymers, which is potential for high-performance electronic devices.