2019 International Conference on Document Analysis and Recognition (ICDAR) 2019
DOI: 10.1109/icdar.2019.00227
|View full text |Cite
|
Sign up to set email alerts
|

Two Stream Deep Network for Document Image Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
38
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 30 publications
(39 citation statements)
references
References 25 publications
0
38
0
1
Order By: Relevance
“…In order to get the final enhanced prediction of the combination of both text and image model we use a simple ensemble as in [5]. In this work w 1 , w 2 = 0.5 are found optimal.…”
Section: Image and Text Ensemblementioning
confidence: 99%
See 1 more Smart Citation
“…In order to get the final enhanced prediction of the combination of both text and image model we use a simple ensemble as in [5]. In this work w 1 , w 2 = 0.5 are found optimal.…”
Section: Image and Text Ensemblementioning
confidence: 99%
“…Recently, textual information has been used by itself or as a combination together with visual features extracted by the previously mentioned models. Although Optical Character Recognition (OCR) is prone to errors, particularly when dealing with handwritten documents, the use of modern Natural Language Processing (NLP) techniques have demonstrated a boost in the classifiers performance [5,6,35].…”
Section: Introductionmentioning
confidence: 99%
“…Работа [3] посвящена повышению эффективности обучения классификаторов на основе областей и их объединения для классификации изображений документов, метод достигает точности в 92,21 %. В [4] предложен подход, основанный на выделении, анализе и объединении текстового и визуального потоков для классификации изображений документов, в визуальном потоке используются глубокие CNN для извлечения структурных особенностей изображений, точность зависит от вида входных данных. В исследовании [5] предлагается двухпоточная нейронная архитектура для выполнения задачи классификации изображений документов, при этом используется подход совместного обучения признаков, объединяющий признаки изображения и текстовые части, подход совместного обучения имеет точность классификации до 97,05 %.…”
Section: Abstract: Document Management Automation Intelligent Document Management Document Classification Convolutional Neural Network Imunclassified
“…The primary reason for this is the striking difference between natural scenes and document images. This discrepancy has been noted in prior work, but in a limited context of comparing pretrained models as a good initialization point for the optimization process to establish their utility [13], [16], [18]. Furthermore, they assume the presence of large labeled document image datasets.…”
Section: Introductionmentioning
confidence: 96%
“…Therefore, this paper answers a fundamental question regarding the usefulness of natural scene image feature extractors to represent document images in contrast to documentspecific representations learned without any labeled data, which has been a common practice for document image classification [13], [16]- [18]. Specifically, the contributions of this paper are three-fold:…”
Section: Introductionmentioning
confidence: 99%