Tau, a member of the MAP2/tau family of microtubule-associated proteins, functions to stabilize and organize axonal microtubules in healthy neurons. In contrast, tau dissociates from microtubules and forms neurotoxic extracellular aggregates in neurodegenerative tauopathies. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. We use molecular dynamics, microtubule-binding experiments and live cell microscopy to show that highly conserved histidine residues near the C terminus of each MT-binding repeat are pH sensors that can modulate tau-MT interaction strength within the physiological intracellular pH range. At lower pH, these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH, tau deprotonation decreases microtubulebinding both in vitro and in cells. However, electrostatic and hydrophobic characteristics of histidine are required for tau-MT-binding as