Three-dimensional (3D) organic-inorganic perovskite solar cells have undergone a meteoric rise in cell efficiency to > 22%. However, the perovskite absorber layer is prone to degradation in water, oxygen and UV light. Two-dimensional (2D) Ruddlesden−Popper layered perovskites have exhibited promising environmental stability, but perform less well in solar cells, possibly due to the inhibition of out-of-plane charge transport by the insulating spacer cations. Alternatively, moving away from methylammonium, to the mixed cation formamidinium-caesium based perovskites has led to considerably enhancement of the stability of 3D perovskite absorber layers. Here, we report highly efficient and stable perovskite solar cells based on a self-assembled butylammonium-Cs-formamidinium mixed-cation lead mixed-halide perovskite photoactive layer. Long-chain alkyl-ammonium halides added to the formamidinium-cesium based perovskite precursor solution strongly enhances the crystallinity of the 3D perovskite phase, while also inducing the formation of new layered-phases in the films. By carefully regulating the composition, we are able to achieve "plate-like" layered perovskite crystallites standing up between the host 3D perovskite grains. This spontaneously forming heterostructure allows the efficient charge carrier transport in the 3D perovskite phase, while reducing charge recombination via fortuitous grain boundary passivation. We also observe reduced current-voltage hysteresis and improved device stability, which we correlate to enhanced crystallinity and reduced crystal defects in the 3D perovskite phase. With the optimized composition, we achieved a power conversion efficiency of 20.6% (stabilised efficiency of 19.5%) from a narrow bandgap (1.61 eV) perovskite solar cell and of 17.2 % (stabilised efficiency of 17.3%) from a wider bandgap (1.72 eV) perovskite solar cell optimised for tandem applications. In addition to enhanced efficiency, the addition of butylammonium greatly enhances the long-term stability of the devices. For the first time, our cells sustain more than 80% of their "post burn-in" efficiency after 1,000 hrs of aging under simulated full spectrum sun light measured in an ambient environment without encapsulation. With additional sealing with a glass/polymer-foil/glass laminate, we extend this lifetime to close to 4,000 hrs. Our work illustrates that engineering heterostructures between 2D and 3D perovskite phases is both possible, and can lead to enhancement of both performance and stability of perovskite solar cells.