Proteins that make, consume, and bind to phosphoinositides are important for constitutive membrane traffic. Different phosphoinositides are concentrated in different parts of the central vacuolar pathway, with phosphatidylinositol 4-phosphate predominate on Golgi, phosphatidylinositol 4,5-bisphosphate predominate at the plasma membrane, phosphatidylinositol 3-phosphate the major phosphoinositide on early endosomes, and phosphatidylinositol 3,5-bisphosphate found on late endocytic organelles. This spatial segregation may be the mechanism by which the direction of membrane traffic is controlled. Phosphoinositides increase the affinity of membranes for peripheral membrane proteins that function for sorting protein cargo or for the docking and fusion of transport vesicles. This implies that constitutive membrane traffic may be regulated by the mechanisms that control the activity of the enzymes that produce and consume phosphoinositides. Although the lipid kinases and phosphatases that function in constitutive membrane traffic are beginning to be identified, their regulation is poorly understood.