2019
DOI: 10.24033/asens.2384
|View full text |Cite
|
Sign up to set email alerts
|

Typical orbits of quadratic polynomials with a neutral fixed point: Non-Brjuno type

Abstract: We describe the topological behavior of typical orbits of complex quadratic polynomials Pα(z) = e 2παi z + z 2 , with α of high return type. Here we prove that for such Brjuno values of α the closure of the critical orbit, which is the measure theoretic attractor of the map, has zero area. Then we show that the limit set of the orbit of a typical point in the Julia set of Pα is equal to the closure of the critical orbit. Our method is based on the near parabolic renormalization of Inou-Shishikura, and a unifor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
0
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 5 publications
0
0
0
4
Order By: Relevance
“…Buff 和 Chéritat 的证明本质地用到了 Inou 和 Shishikura [379] 发展起来的近抛物重整理论. 该理 论可以很好地控制二次映射的临界轨道 (参见文献 [150,174]). 同样基于该理论 (以及文献 [29] 中的结 果), Avila 和 Lyubich [29] 证明了某些 (具有有界组合的无穷 primitive 可重整) Feigenbaum 二次多项式 的 Julia 集具有正面积且是局部连通的.…”
Section: Julia 集的面积和 Hausdorff 维数unclassified
See 3 more Smart Citations
“…Buff 和 Chéritat 的证明本质地用到了 Inou 和 Shishikura [379] 发展起来的近抛物重整理论. 该理 论可以很好地控制二次映射的临界轨道 (参见文献 [150,174]). 同样基于该理论 (以及文献 [29] 中的结 果), Avila 和 Lyubich [29] 证明了某些 (具有有界组合的无穷 primitive 可重整) Feigenbaum 二次多项式 的 Julia 集具有正面积且是局部连通的.…”
Section: Julia 集的面积和 Hausdorff 维数unclassified
“…特别地, Douady 猜想对任意单临界多项式成立. 除了文献 [174], 这些结果的证明本质上依 赖于 Yoccoz 的结果和多复变函数论. 目前, 即使是对三次多项式 z → e 2πiα z + b 2 z 2 + z 3 、正弦函数 z → e 2πiα sin z 和指数映射 z → e 2πiα (e z − 1), Douady 猜想仍未解决.…”
Section: 耦合问题unclassified
See 2 more Smart Citations