The aim of this study is to explore the dispersion, clonality, and virulence of Legionella pneumophila serogroups 2 to 14 in the Greek environment. Eighty L. pneumophila serogroup 2 to 14 strains isolated from water distribution systems of hotels, hospitals, athletic venues, and ferries in Greece were tested by monoclonal antibodies (MAbs) for serogroup discrimination and molecularly by amplified fragment length polymorphism (AFLP) for genetic diversity. Fifty-six of 80 strains were also typed by the sequence-based typing (SBT) method. 〈ll strains were further analyzed for detection of two pathogenicity loci: Legionella vir homologue (lvh) and repeats in structural toxin (rtxA). Thirty-seven strains (46.2%) belonged to serogroup 6, 26 strains (32.5%) to serogroup 3, and 7 (8.8%) to other serogroups (4, 5, 8, and 10). Ten strains (12.5%) were nontypeable (NT) into the known serogroups. Thirty-nine different AFLP types were found among the 80 L. pneumophila serogroup 2 to 14 strains, and 24 different SBT types were found among the 56 strains tested. Among the 80 strains, the lvh locus was present in 75 (93.8%), the rtxA locus was found in 76 (95%), and both loci were found in 73 (91.3%) strains. This study showed that there is genetic variability of L. pneumophila serogroups 2 to 14 in the Greek environment as well as a high percentage of the pathogenicity loci. ⌱ntroducing an effective diagnostic test for L. pneumophila serogroups 2 to 14 in urine and promoting the examination of respiratory specimens from patients hospitalized for pneumonia in Greek hospitals are essential.
IMPORTANCEIn this study, the dispersion, clonality, and virulence of environmental isolates of Legionella pneumophila serogroups 2 to 14 (Lp2-14) in Greece were investigated. Genetic variability of Lp2-14 in the Greek environment was identified together with the presence of the pathogenicity loci in a high percentage of the isolates. Despite the high prevalence of Lp2-14 in the Greek environment, no clinical cases were reported, which may be due to underdiagnosis of the disease. Almost all the legionellosis cases are diagnosed in Greece by using the urine antigen test, which is specific for Lp1. There is an urgent need to improve the clinical diagnosis of legionellosis by introducing an effective diagnostic test for Lp2-14 in urine and by promoting the PCR examination of respiratory specimens from patients with compatible clinical symptoms. L egionella species are inhabitants of water and biofilms in both natural and industrial aquatic environments (1). Legionella spp. can cause Legionnaires' disease and the flu-like Pontiac fever in humans, through inhalation of Legionella-contaminated water aerosols (2, 3). In Europe, according to the World Health Organization (WHO), the incidence rate was 10 to 15 cases per million population, and the total case-fatality rate (CFR) was about 12% (4, 5). In the last surveillance report from the European Centre for Disease Prevention and Control (ECDC), for the year 2014, the notification rate of Leg...