2019
DOI: 10.1109/mwc.2018.1800160
|View full text |Cite
|
Sign up to set email alerts
|

UAV-Assisted Emergency Networks in Disasters

Abstract: Reliable and flexible emergency communication is a key challenge for search and rescue in the event of disasters, especially for the case when base stations (BSs) are no longer functioning. Unmanned aerial vehicle (UAV) assisted network is emerging as a promising method to establish emergency networks. In this article, a unified framework of UAV-assisted emergency network is established in disasters. First, the trajectory and scheduling of UAV are jointly optimized to provide wireless service to ground devices… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
238
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
2
1

Relationship

1
9

Authors

Journals

citations
Cited by 575 publications
(271 citation statements)
references
References 15 publications
0
238
0
1
Order By: Relevance
“…For the areas with weak-connection, we list four typical regions that are construction sites in urban, disaster regions in urban, blind coverage spots in the city, and the transportation road. In these areas, some recent studies use UAVs to offer an extended network coverage and perform some specified applications such Areas with weak-connection Urban construction sites Construction project management [119]- [121] Indoor construction monitoring [122], [123] Disaster regions Disaster surveillance [80], [124], [125] Emergency networks construction [126]- [129] Urban coverage blind spots Enhanced coverage in urban area [29], [80], [130]- [133] Patrolling and surveillance [134]- [139] Transportation systems Intelligent transportation systems [140]- [143] Connection between ground vehicles [144]- [147] Areas without network deployment Farms Survey of UAV in agriculture [63], [148] Imagery analysis of crops [149]- [153] Deserts Disaster monitoring [154]- [156] Geomorphological analysis [61], [155], [157] Military detection [158] Forests Trees and plants monitoring [159]- [162] Forest growing volume prediction [163], [164] Oceans Coastal environment analysis [165]- [168] Ocean environment monitoring [169]- [171] Marine science and observation [18]...…”
Section: B Uav-enabled Ioementioning
confidence: 99%
“…For the areas with weak-connection, we list four typical regions that are construction sites in urban, disaster regions in urban, blind coverage spots in the city, and the transportation road. In these areas, some recent studies use UAVs to offer an extended network coverage and perform some specified applications such Areas with weak-connection Urban construction sites Construction project management [119]- [121] Indoor construction monitoring [122], [123] Disaster regions Disaster surveillance [80], [124], [125] Emergency networks construction [126]- [129] Urban coverage blind spots Enhanced coverage in urban area [29], [80], [130]- [133] Patrolling and surveillance [134]- [139] Transportation systems Intelligent transportation systems [140]- [143] Connection between ground vehicles [144]- [147] Areas without network deployment Farms Survey of UAV in agriculture [63], [148] Imagery analysis of crops [149]- [153] Deserts Disaster monitoring [154]- [156] Geomorphological analysis [61], [155], [157] Military detection [158] Forests Trees and plants monitoring [159]- [162] Forest growing volume prediction [163], [164] Oceans Coastal environment analysis [165]- [168] Ocean environment monitoring [169]- [171] Marine science and observation [18]...…”
Section: B Uav-enabled Ioementioning
confidence: 99%
“…Eqs. (29), (31), (34), (36) can be approximated via the Gaussian-Chebyshev quadrature equation as discussed in (19). Due to the limited space, we omit it here.…”
Section: ) Coverage Probability For the Uplink Phasementioning
confidence: 99%
“…Moreover, mobile edge computing (MEC) should be integrated in emergency networks to provide efficient and flexible computing services for twotier users. Owing to the inherent advantages of flexibility and mobility, UAVs has been utilized as flying BSs to provide costeffective solutions for emergency wireless communications in disasters [1]. Nevertheless, UAVs mounted with MEC servers actually cannot improve computation performance due to their limited payloads and short flight time.…”
Section: Introductionmentioning
confidence: 99%