Unmanned aerial vehicles (UAVs) have now become very popular in photogrammetric and remote-sensing applications. Every day, these vehicles are used in new applications, new terrains, and new tasks, facing new problems. One of these problems is connected with flight altitude and the determined ground sample distance in a specific area, especially within cities and industrial and construction areas. The problem is that a safe flight altitude and camera parameters do not meet the required or demanded ground sampling distance or the geometrical and texture quality. In the cases where the flight level cannot be reduced and there is no technical ability to change the UAV camera or lens, the author proposes the use of a super-resolution algorithm for enhancing images acquired by UAVs and, consequently, increase the geometrical and interpretation quality of the final photogrammetric product. The main study objective was to utilize super-resolution (SR) algorithms to improve the geometric and interpretative quality of the final photogrammetric product, assess its impact on the accuracy of the photogrammetric processing and on the traditional digital photogrammetry workflow. The research concept assumes a comparative analysis of photogrammetric products obtained on the basis of data collected from small, commercial UAVs and products obtained from the same data but additionally processed by the super-resolution algorithm. As the study concludes, the photogrammetric products that are created as a result of the algorithms’ operation on high-altitude images show a comparable quality to the reference products from low altitudes and, in some cases, even improve their quality.