1984
DOI: 10.1515/crll.1984.350.152
|View full text |Cite
|
Sign up to set email alerts
|

Über die absolute Galoisgruppe dyadischer Zahlkörper.

Abstract: Die Struktur der absoluten Galoisgruppe p-adischer Zahlk rper wurde von Jannsen und Wingberg in drei Arbeiten [10], [11] und [21] f r ungerade Restklassencharakteristik p bestimmt. In der vorliegenden Arbeit werden dyadische Zahlk rper behandelt, deren maximale zahm-verzweigte Erweiterung die vierten Einheitswurzeln enth lt. F r diese ist der Grad ber Q 2 immer gerade, und es ergibt sich die gleiche Beschreibung der absoluten Galoisgruppe wie f r p>2 (und geradem Grad ber p ):Theorem. Sei k ein p-adischer Zah… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

1989
1989
2023
2023

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…In a sense this would mean that this should correspond to a surface of genus N 2 + 1. For the full proof we refer to [11] and [4], it is based on a theory of H. Koch [14] which axiomizes the fact that for every finite, tamely ramified extension L/K the group G L (p) is a Demuskin group.…”
Section: Explicit Outer Automorphismmentioning
confidence: 99%
“…In a sense this would mean that this should correspond to a surface of genus N 2 + 1. For the full proof we refer to [11] and [4], it is based on a theory of H. Koch [14] which axiomizes the fact that for every finite, tamely ramified extension L/K the group G L (p) is a Demuskin group.…”
Section: Explicit Outer Automorphismmentioning
confidence: 99%