Summary
i. Degenerations of embryonic cells have either been reported as such or have been misinterpreted by various authors as ‘mitotic metabolites’ or blood cells.
2. There is ample support for the morphological identification of dying cells from the following considerations: the degeneration ‘granules’ are initially Feulgen‐positive and have thus originated from nuclear constituents; the stages of cell deaths seen in normal embryos are identical with those produced experimentally and with those observed directly in tissue cultures; degenerating cells react in the same manner to supravital stains in vivo and in vitro.
3. The process of degeneration varies with the degree of specialization of the cell, with its functional state (e.g. mitosis), with the type of animal and under experimental conditions with the causative agents.
4. Cell death may take from less than 1 hr. to about 7 hr. when only a small proportion of a living tissue dies, but may be prolonged to days when numerous cells die simultaneously and their resorption is delayed.
5. Degenerations have been found during the normal development in embryos of all vertebrate animals examined. The occurrence of necrosis in embryos of pure genetical lines is excluded from this article.
6. The incidence of embryonic cell deaths according to site, tissue, developmental stage or process and type of animal is summarized in Table 1.
7. While some degenerations have no obvious function in embryonic development, others seem to play a significant role in embryonic processes, e.g. the morphogenesis and histogenesis of tissues and organs, and the representation and regression of phylogenetic steps (Table 2).
8. Morphogenetic degenerations precede changes in the form of epithelial organs, e.g. during the invagination of the optic cup, the formation of the crystalline lens, the olfactory pit, the neural tube, etc. They bring about the separation of rudiments such as that of the neural tube and the lens from the ectoderm. They reduce the excessive thickening of uniting edges such as those of the body wall and of the mandibles. They are involved in the production of lumina in the solid rudiments of glands and the intestinal tract. In the mesenchyme they precede and make possible the influx of specialized tissue such as the sternal plates or the ingrowth of myogenic tissue in the mandible.
9. Histiogenetic degenerations are related to the differentiation of tissues and organs. The differentiation of the three cell layers of the frog tadpole retina, for instance, is accompanied by three waves of degeneration. Similar cell deaths of early neuroblasts are found in the spinal ganglia outside the limb regions. In amphibia a partial sarcolysis during metamorphosis provides a blastema for the permanent musculature. Sex differentiation of the individual involves the partial degeneration of the Mullerian or Wolffian ducts. Cell deaths also occur in relation to fibre formation and to the appearance of bone and cartilage matrix. Their role in these and in evocatory processes needs furthe...