“…The function of HIV-1 Nef is multifarious, as the protein plays a critical role in: T cell activation for virus replication ( Sleckman et al., 1992 ; Salghetti et al., 1995 ; Brown et al., 1999 ; Kim et al., 1999 ; Schibeci et al., 2000 ; Wang et al., 2000 ); membrane trafficking of molecules, such as CD4 ( Guy et al., 1987 ; Garcia and Miller, 1991 ; Anderson et al., 1993 ; Mariani and Skowronski, 1993 ; Rhee and Marsh, 1994 ), major histocompatibility complex class (MHC I) ( Schwartz et al., 1996 ; Le Gall et al., 1997 ), and others ( Aiken et al., 1994 ; Schwartz et al., 1996 ) to facilitate HIV-1 infectivity and immune escape; stability of viral and cellular proteins via the ubiquitin proteasome system ( Sugiyama et al., 2011 ; Kmiec et al., 2018 ; Pyeon et al., 2019 ; Ali et al., 2020 ; Qiu et al., 2020 ; Zhang et al., 2020 ); chemotaxis ( Swingler et al., 1999 ; Choe et al., 2002 ; Park and He, 2009 ; Stolp et al., 2009 ; Stolp et al., 2012 ; Park and He, 2013 ; Rossi et al., 2016 ; Lamas-Murua et al., 2018 ); and intercellular communications through exosomes ( Lenassi et al., 2010 ; Narayanan et al., 2013 ; McNamara et al., 2018 ; Mukhamedova et al., 2019 ; Chen et al., 2020 ; Dubrovsky et al., 2020 ) and conduits/filopodia ( Xu et al., 2009 ; Nobile et al., 2010 ; Tan et al., 2013 ; Park et al., 2014 ). Molecular processes, such as signaling cascades, gene expression, etc., leading to these biological changes by HIV-1 Nef have been comprehensively investigated, as reviewed ( Renkema and Saksela, 2000 ; Abraham and Fackler, 2012 ; Felli et al., 2017 ; Heusinger and Kirchhoff, 2017 ; Buffalo et al., 2019 ; Staudt et al., 2020 ).…”