Binocular disparities underlie precise stereoscopic depth perception but only over a finite range. At large disparities, objects appear diplopic, and depth perception is degraded. Measurements of the range of horizontal disparities for which single vision is experienced have previously been restricted to the horizontal plane of regard. We extended these mappings, in two experiments, to the upper and lower visual fields and eccentric meridians. In Experiment 1, we measured empirical corresponding points and fusional limits at identical elevations in the median plane for 20 participants. We observed a vertical shear in binocular correspondence consistent with a backward inclined empirical vertical horopter and the fusional range centered upon it. In Experiment 2, we mapped the vertical horopter and fusional limits for a second set of elevations in the median plane and at two additional eccentricities and found a similar pattern of results as in Experiment 1. For 23 of 25 participants in this study, we found that the relationship between measurements of the vertical horopter and fusional range is similar to the established relationship between Panum's fusional range and the horizontal horopter. Our data replicate previous findings that the vertical horopter is inclined top back. We are the first to illustrate that the fusional range of horizontal disparities is approximately centered upon the vertical horopter in the median plane and along eccentric meridians.