<span>Wireless capsule endoscopy (WCE) is a significant modern technique for observing the whole gastroenterological tract to diagnose various diseases like bleeding, ulcer, tumor, Crohn's disease, polyps etc in a non-invasive manner. However, it will make a substantial onus for physicians like human oversight errors with time consumption for manual checking of a vast amount of image frames. These problems motivate the researchers to employ a computer-aided system to classify the particular information from the image frames. Therefore, a computer-aided system based on the color threshold and morphological operation has been proposed in this research to recognize specified bleeding images from the WCE. Besides, A unique classifier, quadratic support vector machine (QSVM) has been employed for classifying the bleeding and non-bleeding images with the statistical feature vector in HSV color space. After extensive experiments on clinical data, 95.8% accuracy, 95% sensitivity, 97% specificity, 80% precision, 99% negative predicted value and 85% F1 score has been achieved, which outperforms some of the existing methods in this regard. It is expected that this methodology would bring a significant contribution to the WCE technology. </span>