<span>Wireless capsule endoscopy (WCE) is a significant modern technique for observing the whole gastroenterological tract to diagnose various diseases like bleeding, ulcer, tumor, Crohn's disease, polyps etc in a non-invasive manner. However, it will make a substantial onus for physicians like human oversight errors with time consumption for manual checking of a vast amount of image frames. These problems motivate the researchers to employ a computer-aided system to classify the particular information from the image frames. Therefore, a computer-aided system based on the color threshold and morphological operation has been proposed in this research to recognize specified bleeding images from the WCE. Besides, A unique classifier, quadratic support vector machine (QSVM) has been employed for classifying the bleeding and non-bleeding images with the statistical feature vector in HSV color space. After extensive experiments on clinical data, 95.8% accuracy, 95% sensitivity, 97% specificity, 80% precision, 99% negative predicted value and 85% F1 score has been achieved, which outperforms some of the existing methods in this regard. It is expected that this methodology would bring a significant contribution to the WCE technology. </span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.