This review covers selected results of recent observations of lightning discharges performed across the entire electromagnetic spectrum (radiofrequency, optical, and energetic radiation) at the Lightning Observatory in Gainesville, Florida. The most important results include (a) characterization of the preliminary-breakdown, stepped-leader, and return-stroke processes in high-intensity (⩾50 kA) negative lightning discharges, (b) the first high-speed video images of bidirectional leader that made contact with the ground and produced a return stroke, (c) discovery of negative stepped leader branches colliding with the lateral surface of neighboring branches of the same leader, (d) new data on the occurrence context and properties of compact intracloud discharges, and (e) observation of a terrestrial gamma-ray flash that occurred during a bipolar cloud-to-ground lightning discharge. The results serve to improve our understanding of the physics of lightning with important implications for lightning modeling, lightning protection, and high-energy atmospheric physics studies.