The LiFi enabled smart street lighting system requires the adaptive SoC to save huge amount of power/energy for data storage, which plays an important role for any urban area development. For the above application, an energy-efficient data-dependent power supplied 10T SRAM cell with half-select free readdecoupled circuit is designed to boost stability while stacking effect controls the leakage current against the process-voltage-temperature variations. CMOS 65 nm technology node is used for the implementation and comparison of various SRAM cells. The proposed cell offers 4×, 1.15×, and 1.66× higher read, hold, and write stability, respectively, as compared with the 6T cell at 0.4 V supply voltage. The improvement of write, read, and leakage power of the proposed 10T cell are 98.03%, 56.25%, and 91.07%, respectively, as compared with the 6T cell at 0.2 V supply. It is also observed that the proposed 10T cell has 88.88% and 85.71% write 0 and write 1 energy, respectively, as compared with the 6T cell at 0.2 V supply voltage. To better assess the cell, we introduced the figure of merit (FOM) and observed that the FOM of the proposed cell is 125× higher as compared with the 6T cell at 0.4 V supply voltage.