Excitation energy transfer (EET) is a process where the electronically excitation is transferred from a donor to an acceptor. EET is widely seen in both natural and in artificial systems, such as light-harvesting in photosynthesis, the fluorescence resonance energy transfer technique, and the design of light-emitting molecular devices. In this work, we outline the theories describing both singlet and triplet EET (SEET and TEET) rates, with a focus on the physical nature and computational methods for the electronic coupling factor, an important parameter in predicting EET rates. The SEET coupling is dominated by the Coulomb coupling, and the remaining short-range coupling is very similar to the TEET coupling. The magnitude of the Coulomb coupling in SEET can vary much, but the contribution of shortrange coupling has been found to be similar across different excited states in naphthalene. The exchange coupling has been believed to be the major physical contribution to the shortrange coupling, but it has been pointed out that other contribution, such as the orbital overlap effect is similar or even larger in strength. The computational aspects and the subsequent physical implication for both SEET and TEET coupling values are summarized in this work.