Resonant modulators encode electrical data onto wavelength-multiplexed optical carriers. Today, silicon microring modulators are perceived as promising to implement such links; however, they provide limited bandwidth and need thermal stabilization systems. Here we present plasmonic micro-racetrack modulators as a potential successor of silicon microrings: they are equally compact and compatible with complementary-metal–oxide–semiconductor-level driving voltages, but offer electro-optical bandwidths of 176 GHz, a 28 times improved stability against operating temperature changes and no self-heating effects. The temperature-resistant organic electro-optic material enables operation at 85 °C device temperature. We show intensity-modulated transmission of up to 408 Gbps at 12.3 femtojoules per bit with a single resonant modulator. Plasmonic micro-racetrack modulators offer a solution to encode high data rates (for example, the 1.6 Tbps envisioned by next-generation communications links) at a small footprint, with low power consumption and marginal, if no, temperature control.