We present a new chromatic numerical approach to simulate the amplification of laser pulses in multipass laser amplifiers. This enables studies on spectral effects such as gain narrowing and spectral shaping with optical elements expressed by a transmission transfer function. We observe good agreement between our simulations and measurements with a Ho:YLF regenerative amplifier (RA). To demonstrate the capabilities of our simulation model, we numerically integrate an intra-cavity etalon in this laser and find optimum etalon parameters that enhance the peak power of the output pulses up to 65%.