From lifetime measurements, including a direct experimental comparison with thermal SiO2, a-Si:H, and as-deposited a-SiNx:H, it is demonstrated that Al2O3 provides an excellent level of surface passivation on highly B-doped c-Si with doping concentrations around 1019cm−3. The Al2O3 films, synthesized by plasma-assisted atomic layer deposition and with a high fixed negative charge density, limit the emitter saturation current density of B-diffused p+-emitters to ∼10 and ∼30fA∕cm2 on >100 and 54Ω∕sq sheet resistance p+-emitters, respectively. These results demonstrate that highly doped p-type Si surfaces can be passivated as effectively as highly doped n-type surfaces.