Compared to well-tolerated p3 fusion, the display of fast-folding proteins fused to the minor capsid p7 and the major capsid p8, as well as in vivo biotinylation of biotin acceptor peptide (AP) fused to p7, are found to be markedly inefficient using the filamentous phage. Here, to overcome such limitations, the effect of translocation pathways, amber mutation, and phage and phagemid display systems on p7 and p8 display of antibody-binding domains are examined, while comparing the level of in vivo biotinylation of AP fused to p7 or p3. Interestingly, the in vivo biotinylation of AP occurs only in p3 fusion and the fast-folding antibody-binding scaffolds fused to p7 and p8 are best displayed via a twin-arginine translocation pathway in TG1 cells. The lower the expression level of the wild-type p8 and the smaller the size of the guest protein, the better the display of Z-domain fused to the recombinant p8. The in vivo biotinylated multifunctional filamentous virus-like particles can be vertically immobilized on streptavidin (SAV)-coated microspheres to resemble cellular microvilli-like structures, which reportedly enhance protein-protein interactions due to dramatically expanded flexible surface area.