Quantification of circulating tumor cells (CTCs) in blood samples is believed to provide valuable evidence of cancer progression, cancer activity status, response to therapy in patients with metastatic cancer, and possible cancer diagnosis. Recently, a number of researchers reported that CTCs tend to lose their epithelial cell adhesion molecule (EpCAM) by an epithelial-mesenchymal transition (EMT). As such, label-free CTC detection methods are attracting worldwide attention. Here, we describe a label-free DC impedance-based microcytometer for CTCs by exploiting the difference in size between CTCs and blood cells. This system detects changes in DC impedance between two polyelectrolytic gel electrodes (PGEs) under low DC voltages. Using spiked ovarian cancer cell lines (OVCAR-3) in blood as a model system, we were able to count the cells using a microcytometer with 88% efficiency with a flow rate of 13 μl min(-1) without a dilution process. Furthermore, we examined blood samples from breast cancer patients using the cytometer, and detected CTCs in 24 out of 24 patient samples. Thus, the proposed DC impedance-based microcytometer presents a facile and fast way of CTC evaluation regardless of their biomarkers.
The development of an efficient platform for the growth and neuronal differentiation of stem cells is crucial for autologous cell therapy and tissue engineering to treat various neuronal disorders and neurodegenerative diseases. In this study, we describe the use of highly uniform graphene platforms that provide unique environments where unusual three-dimensional spheroids of human mesenchymal stem cells (hMSCs) are formed, which is advantageous for the differentiation of hMSCs into neurons. We suppose that graphene regulates the interactions at cell-substrate or cell-cell interfaces, consequently promoting the neurogenesis of hMSCs as well as the outgrowth of neurites, which was evidenced by the graphene-induced upregulation of early neurogenesis-related genes. We also demonstrated that the differentiated neurons from hMSCs on graphene are notably sensitive to external ion stimulation, and their neuronal properties can be maintained even after detaching and re-seeding onto a normal cell culture substrate, suggesting the enhanced maturity of resulting neuronal cells. Thus, we conclude that monolayer graphene is capable of regulating the growth and neural differentiation of hMSCs, which would provide new insight and strategy not only for autologous stem cell therapy but for tissue engineering and regenerative medicine based on graphene scaffolds.
Type-specificity of synapses, excitatory and inhibitory, regulates information process in neural networks via chemical neurotransmitters. To lay a foundation of synapse-based neural interfaces, artificial dendrites are generated by covering abiotic substrata with ectodomains of type-specific synaptogenic proteins that are C-terminally tagged with biotinylated fluorescent proteins. The excitatory artificial synapses displaying engineered ectodomains of postsynaptic neuroligin-1 (NL1) induce the formation of excitatory presynapses with mixed culture of neurons in various developmental stages, while the inhibitory artificial dendrites displaying engineered NL2 and Slitrk3 induce inhibitory presynapses only with mature neurons. By contrast, if the artificial dendrites are applied to the axonal components of micropatterned neurons, correctly-matched synaptic specificity emerges regardless of the neuronal developmental stages. The hemisynapses retain their initially established type-specificity during neuronal development and maintain their synaptic strength provided live neurons, implying the possibility of durable synapse-based biointerfaces.
A newly fabricated plasma-polymerized poly(ethylene glycol) (PP-PEG) film shows extremely low toxicity, low fouling, good durability, and chemical similarity to typical PEG polymers, enabling live cell patterning as well as various bioapplications using bioincompatible materials. The PP-PEG film can be overlaid on any materials via the capacitively coupled plasma chemical vapor deposition (CCP-CVD) method using nontoxic PEG200 as a precursor. The biocompatibility of the PP-PEG-coated surface is confirmed by whole blood flow experiments where no thrombi and less serum protein adsorption are observed when compared with bare glass, polyethylene (PE), and polyethylene terephthalate (PET) surfaces. Furthermore, unlike bare PE films, less fibrosis and inflammation are observed when the PP-PEG-coated PE film is implanted into subcutaneous pockets of mice groin areas. The cell-repellent property of PP-PEG is also verified via patterning of mammalian cells, such as fibroblasts and hippocampal neurons. These results show that our PP-PEG film, generated by the CCP-CVD method, is a biocompatible material that can be considered for broad applications in biomedical and functional materials fields.
In immunoassays, non‐specific bindings to biosensing surfaces can be effectively prevented by formation of biocompatible and hydrophilic self‐assembled monolayer (SAM) on the surfaces. A thin gold (Au) layer on magnetic microspheres, 15 μm in diameter, enables facile SAM formation and thereby accepts second layer of filamentous virus scaffolds for the immobilization of functional proteins. The merger of the virus and SAM‐Au protected microspheres not only provides exceptionlly dense antibody loading, but also resembles biological cellular structures that enhance ligand‐receptor interactions. Site‐specific biotinylation of filamenous viruses allows formation of free‐standing virus threads (>1.0 × 1010) on streptavidin‐modified SAM‐Au microspheres. The augmented yield of antibody loading, due to the increased surface to volume ratio, on virus‐modified Au microspheres is confirmed by measuring fluorescence intensities. The bead‐based immunoassays for the detection of cardiac marker proteins exhibit increased sensitivity of virus‐Au microspheres, as low as 20 pg mL−1 of cardiac troponin I in serum, and extremely low non‐specific adsorption when compared with bare polymer beads. This increased sensitivity due to filamentous morphology and SAM‐Au layer demonstrates the feasibility of merging viruses with non‐biological materials to yield biomimetic tools for the enhanced bead‐based immunoassays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.