The production of nanowire materials, uniformly oriented along any arbitrarily chosen crystal orientation, is an important, yet unsolved, problem in material science. Here, we present a generalizable solution to this problem. The solution is based on the technique of glancing angle deposition combined with a rapid switching of the deposition direction between crystal symmetry positions. Using iron–cobalt as an example, we showcase the simplicity and capabilities of the process in one-step fabrications of 〈100〉, 〈110〉, 〈111〉, 〈210〉, 〈310〉, 〈320〉, and 〈321〉-oriented nanowires, three-dimensional nanowire spirals, core–shell heterostructures, and axial hybrids. Our results provide a new capability for tailoring the properties of nanowires, and should be generalizable to any material that can be grown as a single-crystal biaxial film.