While two-dimensional (2D) semiconductors are explored as field-effect transistor (FET) channel materials for decreasing the short channel effects, electrical contact with 2D semiconductors is a major issue. Many efforts have been made toward this issue. However, the discrepancy in the contact type and the Schottky barrier height from the same contact is present in experiments. This discrepancy supposedly should be associated with the vapor-deposition electrode structures, on which little attention had been focused. Here, the crystal growth of the gold vapor-deposition electrode is simulated by adding gold atoms to the gold substrate one by one in the framework of density functional theory, and for every step, the spontaneously searching adsorption site method is used to find thermodynamically stable adsorption sites and the climbing nudged elastic band method is used to find kinetically stable ones. Simulation shows that the Au(111) face grows according to the ABC sequence packing, and possible defects are interstitial, vacancy, and the partly filled nascent layer (PFNL). These defects have an unequal effect on the electrode work function. The PFNL may be a non-negligible factor responsible for the discrepancy.