The response ranges of three principal mechanical parameters were measured following cyclic compressive loading of three types of concrete specimen to a pre-defined number of cycles. Thus, compressive strength, compressive modulus of elasticity, and maximum compressive strain were studied in (i) plain, (ii) steel-fiber-reinforced, and (iii) polypropylene-fiber-reinforced high-performance concrete specimens. A specific procedure is presented for evaluating the residual values of the three mechanical parameters. The results revealed no significant variation in the mechanical properties of the concrete mixtures within the test range, and slight improvements in the mechanical responses were, in some cases, detected. In contrast, the scatter of the mechanical parameters significantly increased with the number of cycles. In addition, all the specimens were scanned by means of high resolution computed tomography, in order to visualize the microstructure and the internal damage (i.e., internal micro cracks). Consistent with the test results, the images revealed no observable internal damage caused by the cyclic loading.