There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the Multiparameter Intelligent Monitoring in Intensive Care waveform database for better representation of possible pulse and pressure variation. In total there were analyzed more than 15000 heartbeats and 21 parameters were extracted from each of them that define the input vector for the ANN. The comparison between estimated and reference values shows better accuracy than the linear regression method and satisfy the American National Standards of the Association for the Advancement of Medical Instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.