1998
DOI: 10.1016/s0749-6419(98)00006-0
|View full text |Cite
|
Sign up to set email alerts
|

Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation—Part II. Experiment and simulation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
6
0
1

Year Published

2008
2008
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 37 publications
(8 citation statements)
references
References 0 publications
1
6
0
1
Order By: Relevance
“…Later this theory was expanded by Maurel [13]. Experimental investigations of the propagation velocity and the attenuation of ultrasound waves in metallic materials during plastic flow were carried out by Gremaud et al [14], by Ogi et al [15], by Zuev et al [16,17] and Kobayashi [18,19].…”
Section: Introductionmentioning
confidence: 99%
“…Later this theory was expanded by Maurel [13]. Experimental investigations of the propagation velocity and the attenuation of ultrasound waves in metallic materials during plastic flow were carried out by Gremaud et al [14], by Ogi et al [15], by Zuev et al [16,17] and Kobayashi [18,19].…”
Section: Introductionmentioning
confidence: 99%
“…If it remains undetected, an invisible crack produced by a fatigue load or impact may induce a highly localized stress region even under a small external load, degrading the mechanical integrity. Nondestructive testing, which predicts the formation of microcracks in materials and the stress distribution caused by the cracks without destroying previously operated equipment and parts, has attracted considerable attention . Several nondestructive techniques have been proposed for detecting microcracks: optical transmission, , scanning acoustic microscopy, , resonance ultrasonic vibration, luminescence imaging, , and others. , However, there are limitations in predicting the distribution of stress fields around microcracks, and the testing method can be enhanced by improving the price competitiveness, equipment management, field of view, and data processing. Along with the presence of microcracks, the stress field in the vicinity of a microcrack is an important factor as it can reveal the fracture driving force and the crack propagation direction. , Therefore, it is necessary to develop a nondestructive method that can visualize the stress distribution around microcracks over a large area.…”
Section: Introductionmentioning
confidence: 99%
“…Следовательно, различные структурно-чувствительные способы ультразвукового контроля могут быть использованы для оценки состояния материала, испытывающего пластическую деформацию. Среди них хорошо известны способы, основанные на измерении скорости [1][2][3][4][5], затухания [5][6][7][8], параметра акустической анизотропии (двулучепреломления) [6,[9][10][11][12][13], параметра нелинейности [5,[14][15][16][17]. Ранее [18] на примере низколегированной стали 09Г2С было показано, что определяемые ультразвуковым методом коэффициент Пуассона и параметр акустической анизотропии линейно связаны с характеристиками текстуры -коэффициентами функции распределения ориентировок [19,20].…”
Section: Introductionunclassified