Piezocatalytic materials have attracted widespread attention in the fields of clean energy and water treatment because of their ability to convert mechanical energy directly into chemical energy. In this study, γ-AlON particles synthesised using carbothermal reduction and nitridation (CRN) were used for the first time as a novel piezocatalytic material to degrade dye solutions under ultrasonic vibration. The γ-AlON particles exhibited good performance as a piezocatalytic material for the degradation of organic pollutants. After 120 min under ultrasonic vibration, 40 mg portions of γ-AlON particles in 50 mL dye solutions (10 mg/L) achieved 78.06%, 67.74%, 74.29% and 64.62% decomposition rates for rhodamine B (RhB), methyl orange (MO), methylene blue (MB) and crystal violet (CV) solutions, respectively; the fitted k values were 13.35 × 10−3, 10.79 × 10−3, 12.09 × 10−3 and 8.00 × 10−3 min−1, respectively. The piezocatalytic mechanism of γ-AlON particles in the selective degradation of MO was further analysed in free-radical scavenging activity experiments. Hydroxyl radicals (•OH), superoxide radicals (•O2−), holes (h+) and electrons (e−) were found to be the main active substances in the degradation process. Therefore, γ-AlON particles are an efficient and promising piezocatalytic material for the treatment of dye pollutants.