Aims: Breast cancer is the most common malignancy among women in both high- and low-resource settings. Conventional breast cancer therapies were inefficient and had low patient compliance. Stimuli-responsive hydrogels possessing similar physicochemical features as soft tissue facilitate diagnostic and therapeutic approaches for breast cancer subtypes.Scope: Polysaccharides and polypeptides are major natural polymers with unique biocompatibility, biodegradability, and feasible modification approaches utilized frequently for hydrogel fabrication. Alternating the natural polymer-based hydrogel properties in response to external stimuli such as pH, temperature, light, ultrasonic, enzyme, glucose, magnetic, redox, and electric have provided great potential for the evolution of novel drug delivery systems (DDSs) and various advanced technologies in medical applications. Stimuli-responsive hydrogels are triggered by specific cancer tissue features, promote target delivery techniques, and modify release therapeutic agents at localized sites. This narrative review presented innovation in preparing and characterizing the most common stimuli-responsive natural polymer-based hydrogels for diagnostic and therapeutic applications in the breast cancer area.Conclusion: Stimuli-responsive hydrogels display bioinspiration products as DDSs for breast cancer subtypes, protect the shape of breast tissue, provide modified drug release, enhance therapeutic efficacy, and minimize chemotherapy agents’ side effects. The potential benefits of smart natural polymer-based hydrogels make them an exciting area of practice for breast cancer diagnosis and treatment.