Myelin is a multilamellar membrane structure formed by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). It has been recognized as an insulator that is essential for the rapid and e‹cient propagation of action potentials by saltatory conduction. However, recently many studies have shown that myelin and myelin-forming cells interact with axons and regulate the nervous system far more actively than previously thought. For example, myelination changes axons dynamically and divides them into four distinct functional domains: node of Ranvier, paranode, juxtaparanode, and internode. Voltage-gated Na + channels are clustered at the node, while K + channels are at the juxtaparanode, and segregation of these channels by paranodal axoglial junction is necessary for proper axonal function. My research experience began at the neurology ward of the Niigata University Medical Hospital, where I saw a patient with peripheral neuropathy of unknown etiology more than 37 years ago. In the patient's serum, we found an autoantibody against a glycolipid enriched in the PNS. Since then, I have been interested in myelin because of its beautiful structure and unique roles in the nervous system. In this review, our recent studies related to CNS and PNS myelin are presented.