Apoptosis has been extensively studied in Drosophila by both biochemical and genetic approaches, but there is a lack of knowledge about the mechanisms of apoptosis regulation in other insects. In mosquitoes, apoptosis occurs during Plasmodium and arbovirus infection in the midgut, suggesting that apoptosis plays a role in mosquito innate immunity. We searched the Aedes aegypti genome for apoptosis-related genes using Drosophila and Anopheles gambiae protein sequences as queries. In this study we have identified eleven caspases, three inhibitor of apoptosis (IAP) proteins, a previously unreported IAP antagonist, and orthologs of Drosophila Ark, Dnr1, and BG4 (also called dFadd). While most of these genes have been previously annotated, we have improved the annotation of several of them, and we also report the discovery of four previously unannotated apoptosis-related genes. We examined the developmental expression profile of these genes in Ae. aegypti larvae, pupae and adults, and we also studied the function of a novel IAP antagonist, IMP. Expression of IMP in mosquito cells caused apoptosis, indicating that it is a functional pro-death protein. Further characterization of these genes will help elucidate the molecular mechanisms of apoptosis regulation in Ae. aegypti.