While many point mutations in the HIV-1 reverse transcriptase (RT) confer resistance to antiretroviral drugs, inserts or deletions in this gene have not been previously characterized. In this report, 14 RT inhibitor-treated patients were found to have HIV-1 strains possessing a 6-basepair insert between codons 69 and 70 of the RT gene. Known drug resistance mutations were also observed in these strains, with T215Y appearing in all strains. Genotypic analysis indicated that the inserts had substantial nucleotide variability that resulted in relatively restricted sets of amino acid sequences. Linkage of patients' treatment histories with longitudinal sequencing data showed that insert strains appeared during drug regimens containing ddI or ddC, with prior or concurrent AZT treatment. Drug susceptibility tests of recombinant patient isolates showed reduced susceptibility to nearly all nucleoside RT inhibitors. Sitedirected mutagenesis studies confirmed the role of the inserts alone in conferring reduced susceptibility to most RT inhibitors. The addition of AZT-associated drug resistance mutations further increased the range and magnitude of resistance. These results establish that inserts, like point mutations, are selected in vivo during antiretroviral therapy and provide resistance to multiple nucleoside analogs. ( J.
Mosquitoes infect human beings with arboviruses while taking a blood meal, inoculating virus with their saliva. Mosquito saliva contains compounds that counter host hemostatic, inflammatory, and immune responses. Modulation of these crucial defensive responses may facilitate virus infection. Using a murine model we explored the potential for mosquitoes to impact the course of West Nile virus (WNV) disease by determining whether differences in pathogenesis occurred in the presence or absence of mosquito saliva. Mice inoculated intradermally with 10(4) pfu of WNV subsequent to the feeding of mosquitoes developed more progressive infection, higher viremia, and accelerated neuroinvasion than the mice inoculated with WNV alone. At a lower dose of WNV (10(2) pfu), mice fed upon by mosquitoes had a lower survival rate. This study suggests that mosquito feeding and factors in mosquito saliva can potentiate WNV infection, and offers a possible mechanism for this effect via accelerated infection of the brain.
We investigated the spatial and temporal distribution of West Nile virus (WNV) in organs and tissues of Culex pipiens quinquefasciatus mosquitoes for up to 27 days following oral infection. WNV antigen was detected in paraffin-embedded mosquitoes by immunohistochemistry. Immunofluorescence assays were performed on dissected salivary glands and midguts and analyzed by confocal microscopy. We evaluated the route of virus dissemination following midgut escape and the relative importance of amplifying tissues in mosquito susceptibility to infection. WNV infection was persistent in all tissues analyzed including the midgut, salivary glands, nervous system, and fat body and only declined in the cytoplasm of posterior midgut epithelial cells over time. The phenomenon of cell-to-cell spread was observed in the midgut epithelium and WNV intensely infected both circular and longitudinal muscles of the same organ. It is possible that muscle tissue serves as a conduit for virus dissemination and contributes to WNV amplification, particularly late in infection. These findings provide insight into WNV infection dynamics in a highly susceptible, epidemiologically important, North American vector. Our results pave the way for future studies to analyze physical and biological barriers to WNV dissemination in less competent mosquitoes.
A trans-packaging system for West Nile virus (WNV) subgenomic replicon RNAs (repRNAs), deleted for the structural coding region, was developed. WNV repRNAs were efficiently encapsidated by the WNV C/prM/E structural proteins expressed in trans from replication-competent, noncytopathic Sindbis virus-derived RNAs.
The ultrastructural features of West Nile virus (WNV) replication and dissemination in orally infected Culex pipiens quinquefasciatus Say were analyzed over a 25-d infection period. To investigate the effects of virus replication on membrane induction, cellular organization, and cell viability in midgut and salivary gland tissues, midguts were dissected on days 3, 7, 14, and 21, and salivary glands were collected on days 7, 14, 21, and 25 postinfection (d.p.i.) for examination by transmission electron microscopy (TEM). Whole mosquito heads were embedded for TEM analysis 14 d.p.i. to localize WNV particles and to investigate the effects of replication on nervous tissues of the brain. Membrane proliferation was induced by WNV in the midgut epithelium, midgut muscles, and salivary glands, although extensive endoplasmic reticulum swelling was a unique feature of salivary gland infection. TEM revealed WNV-induced pathology in salivary glands at 14, 21, and 25 d.p.i., and we hypothesize that long-term virus infection of this tissue results in severe cellular degeneration and apoptotic-like cell death. This finding indicates that the efficiency of WNV transmission may decrease with mosquito age postinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.