A dual-frequency-comb spectrometer based on two quantum-cascade lasers is applied to kinetics studies of formaldehyde (HCHO) in a shock tube. Multispectral absorption measurements are carried out in a broad spectral range of 1740–1790 cm–1 at temperatures of 800–1500 K and pressures of 2–3 bar. The formation of HCHO from thermal decomposition of 1,3,5-trioxane (C3H6O3, 0.9% diluted in argon) and the subsequent oxidation of formaldehyde is monitored with a time resolution of 4 µs. The rate coefficient of the decomposition of C3H6O3 (i.e., HCHO formation) is found to be k1 = 6.0 × 1015 exp(− 205.58 kJ mol−1/RT) s–1. For the oxidation studies, mixtures of 0.36% C3H6O3 and 1% O2 in argon are used. The information of all laser lines, along with the consideration of individual signal variance of each line, is utilized for kinetic and spectral analysis. The experimental kinetic profiles of HCHO are compared with simulations based on the mechanisms of Zhou et al. (Combust Flame, 197:423–438, 2018) and Cai and Pitsch (Combust Flame, 162:1623–1637, 2015).