Anais Da X Escola Regional De Computação Do Ceará, Maranhão E Piauí (ERCEMAPI 2022) 2022
DOI: 10.5753/ercemapi.2022.226508
|View full text |Cite
|
Sign up to set email alerts
|

Um Método Baseado em Radiomics e MLP para Diagnóstico Automático de COVID-19 a partir de Raio-X de Tórax

Abstract: A identificação da COVID-19 é um fator crucial para o tratamento e cura dos pacientes. Com o avanço da tecnologia, tornou-se possível o desenvolvimento de métodos computacionais capazes de auxiliar os especialistas na tarefa de análise de imagens médicas. Portanto, o presente trabalho tem como objetivo desenvolver um método automático de diagnóstico da COVID-19 por meio de imagens de raio-X do tórax usando uma abordagem Radiomics e o algoritmo Multi-Layer Perceptron. O método proposto foi avaliado … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 18 publications
(21 reference statements)
0
1
0
Order By: Relevance
“…However, CT exams produce images with more detail, which makes the diagnosis more efficient. Since it was declared a global pandemic affected by COVID-19, scientists worldwide have been creating methods and tools that can help in the segmentation and classification of lesions caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), especially in imaging tests [Silva et al 2023, de Sousa Filho et al 2022, Silva et al 2021].…”
Section: Introductionmentioning
confidence: 99%
“…However, CT exams produce images with more detail, which makes the diagnosis more efficient. Since it was declared a global pandemic affected by COVID-19, scientists worldwide have been creating methods and tools that can help in the segmentation and classification of lesions caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), especially in imaging tests [Silva et al 2023, de Sousa Filho et al 2022, Silva et al 2021].…”
Section: Introductionmentioning
confidence: 99%