1998
DOI: 10.1006/jnth.1997.2202
|View full text |Cite
|
Sign up to set email alerts
|

Un théorème de Frobenius singulier via l'arithmétique élémentaire

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
17
0
4

Year Published

2013
2013
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(22 citation statements)
references
References 8 publications
1
17
0
4
Order By: Relevance
“…Natural examples of such groups of germ maps are given by holonomy groups and monodromy groups of integrable systems (foliations) under certain conditions. We prove some finiteness results for these groups extending previous results in [3]. Applications are given to the framework of germs of holomorphic foliations.…”
supporting
confidence: 59%
See 1 more Smart Citation
“…Natural examples of such groups of germ maps are given by holonomy groups and monodromy groups of integrable systems (foliations) under certain conditions. We prove some finiteness results for these groups extending previous results in [3]. Applications are given to the framework of germs of holomorphic foliations.…”
supporting
confidence: 59%
“…Using these ideas and some features from arithmetics, in [3] the authors prove a finiteness theorem for groups of germs of complex diffeomorphisms in one variable. This reads as follows: Theorem 1.1 ([3], Theorem 1 page 221).…”
Section: Introductionmentioning
confidence: 99%
“…We now apply the following lemma whose proof is found in [3] (page 222): This produces a convergent algorithm in the Krull topology. This already shows that G is formally linearizable.…”
Section:  mentioning
confidence: 99%
“…Voici deux résultats dus à D. Cerveau et F. Loray [11] et D. Cerveau et J.-F. Mattei [12] que nous concentrons dans un seul et qui donnent un aperçu raisonnable des feuilletages F = F ω lorsque ω ν est non dicritique logarithmique. Théorème 4.…”
Section: Notations Définitions Et Rappelsunclassified
“…Modulo des conditions génériques portant sur ω ν , ces propriétés sont gardées en mémoire par les ω telles que In(ω) = ω ν . Ainsi, dans le cas non dicritique, si [P ν+1 = 0] ⊂ P n−1 C est réduit et à croisement normaux, alors F ω est encore défini par une 1−forme fermée méromorphe dès que les résidus λ i de ω ν = In(ω) satisfont une condition générique (satisfaite sur un ouvert dense) ; de même si [P ν+1 = 0] est irréductible de degré p s , avec p premier et n ≥ 3 [11] : en fait dans ce cas ω possède une intégrale première holomorphe non constante.…”
Section: Introductionunclassified