A maintenance program must include several techniques of monitoring of the electric motor's conditions. Among these techniques, probably the two classic ones are related to megger and impulse test. Unfortunately, in both cases, inherent drawbacks can expose the electrical motor at a high voltage that could deteriorate insulation condition making difficult its use on industrial environment. As the electrical machines have several different components (e.g., bearings, rotor bars, shaft, and stator windings), the fault frequencies can be excited by mechanical and/or electrical faults making the identification of the real condition difficult. This chapter describes several methods of the nondestructive tests for induction motors based on the motor current signature analysis (MCSA), magnetic flux, and vibration analysis. The method of analysis is a good alternative tool for destructive tests and fault detection in induction motors. Numerical and experimental results demonstrate the effectiveness of the proposed technique. This chapter also presents a model suitable for computer simulation of induction motor in a healthy state and with general asymmetries that can be analyzed simultaneously. The model makes it possible to conduct research on different characteristics of engines and outstanding effects produced by the faults.