2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP) 2021
DOI: 10.1109/mlsp52302.2021.9596205
|View full text |Cite
|
Sign up to set email alerts
|

Uncertain Bayesian Networks: Learning from Incomplete Data

Abstract: When the historical data are limited, the conditional probabilities associated with the nodes of Bayesian networks are uncertain and can be empirically estimated. Second order estimation methods provide a framework for both estimating the probabilities and quantifying the uncertainty in these estimates. We refer to these cases as uncertain or second-order Bayesian networks. When such data are complete, i.e., all variable values are observed for each instantiation, the conditional probabilities are known to be … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?