A simple and scalable framework for longitudinal analysis of Twitter data is developed that combines latent topic models with computational geometric methods. Dimensionality reduction tools from computational geometry are applied to learn the intrinsic manifold on which the latent, temporal topics reside. Then shortest path distances on the manifold are used to link together these topics. The proposed framework permits visualization of the low-dimensional embedding, which provides clear interpretation of the complex, high-dimensional trajectories that may exist among latent topics. Practical application of the proposed framework is demonstrated through its ability to capture and effectively visualize natural progression of latent COVID-19-related topics learned from Twitter data. Interpretability of the trajectories is achieved by comparing to real-world events. In addition, the framework permits study of spatial variation in Twitter behavior for learned topics. The analysis demonstrates that the proposed framework is able to capture granular-level impact of COVID-19 on public discussions. We end by arguing that Twitter data, when analyzed within the proposed framework, can serve as a valuable supplementary data stream for COVID-related studies.
In second-order uncertain Bayesian networks, the conditional probabilities are only known within distributions, i.e., probabilities over probabilities. The delta-method has been applied to extend exact first-order inference methods to propagate both means and variances through sum-product networks derived from Bayesian networks, thereby characterizing epistemic uncertainty, or the uncertainty in the model itself. Alternatively, second-order belief propagation has been demonstrated for polytrees but not for general directed acyclic graph structures. In this work, we extend Loopy Belief Propagation to the setting of second-order Bayesian networks, giving rise to Second-Order Loopy Belief Propagation (SOLBP). For secondorder Bayesian networks, SOLBP generates inferences consistent with those generated by sum-product networks, while being more computationally efficient and scalable.
When the historical data are limited, the conditional probabilities associated with the nodes of Bayesian networks are uncertain and can be empirically estimated. Second order estimation methods provide a framework for both estimating the probabilities and quantifying the uncertainty in these estimates. We refer to these cases as uncertain or second-order Bayesian networks. When such data are complete, i.e., all variable values are observed for each instantiation, the conditional probabilities are known to be Dirichlet-distributed. This paper improves the current state-of-the-art approaches for handling uncertain Bayesian networks by enabling them to learn distributions for their parameters, i.e., conditional probabilities, with incomplete data. We extensively evaluate various methods to learn the posterior of the parameters through the desired and empirically derived strength of confidence bounds for various queries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.