The ability to characterise residual stress distribution accurately and over different length scales, particularly deep into an engineering part, plays a significant role in assessing structural integrity. Two most commonly used techniques to measure residual stress fields deep into engineering components include neutron diffraction (ND) and deep‐hole drilling (DHD). As the measurements depend on several physical quantities, they are susceptible to error. The error or uncertainties may turn substantial and compromise the suitability of the results. Although noninvasive, the neutron diffraction technique is neither readily available nor portable and is limited to approximately 60‐mm‐thick specimen; errors associated with results become unacceptable at greater flight paths. Moreover, a mock‐up representing the engineering component is normally used in the ND technique. In contrast, the DHD technique is portable and measures residual stresses with high spatial resolution. An error propagation technique was applied to develop an error analysis procedure taking into consideration various stages of the DHD method and successfully applied to different DHD measurements. An essential feature comprising the effect of plasticity due to the creation of reference hole in the DHD procedure has not yet been taken into account in the error analysis procedure. This paper briefly describes how the uncertainties due to the creation of the initial reference hole can be determined. The effect of plasticity in the drilling procedure is quantified in this study. This error is combined with other sources of error and formulated to determine the total error. An incremental DHD technique was used to measure the complex triaxial residual stress field in an as‐welded circular disc, and the measured data were used to illustrate the total error using the error analysis method developed in the study.