In order to design oil production facilities and strategies, it is necessary to acquire crude oil samples from subsurface formations in oil wells in so-called openhole prior to production. In some environments, such as deepwater production of oil, decisions of huge economic importance are based on such samples. To date, there has been little quality control to verify that the crude oils collected in the sample bottles and analyzed up to a year later in the laboratory have any relation to the actual crude oils in the subsurface reservoirs. These high-pressure samples can undergo myriad deleterious alterations. Here, we introduce the chain-of-custody concept to the oilfield. The visible-near-infrared spectrum of the crude oil is measured in situ in the wellbore at the point of sample acquisition. This spectrum is compared with the spectrum measured on putatively the same fluid in the laboratory at the start of laboratory sample analysis. First, quantitative assessment is made of whether the fluid in the (high-pressure) sample bottle remains representative of formation fluids. Second, any specific changes in the spectrum of the fluid can be related to possible process control failures. Here, the entire process of chain of custody is proven. The chain of custody process can rapidly become routine in the petroleum industry, thereby significantly improving the reliability of any process that depends on fluid property determination.