Risk analysis models describing aleatory (i.e., random) events contain parameters (e.g., probabilities, failure rates, …) that are epistemically-uncertain, i.e., known with poor precision. Whereas aleatory uncertainty is always described by probability distributions, epistemic uncertainty may be represented in different ways (e.g., probabilistic or possibilistic), depending on the information and data available. The work presented in this paper addresses the issue of accounting for (in)dependence relationships between epistemically-uncertain parameters. When a probabilistic representation of epistemic uncertainty is considered, uncertainty propagation is carried out by a two-dimensional (or double) Monte Carlo (MC) simulation approach; instead, when possibility distributions are used, two approaches are undertaken: the hybrid MC and Fuzzy Interval Analysis (FIA) method and the MCbased Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs). The objectives are: i) studying the effects of (in)dependence between the epistemically-uncertain parameters of the aleatory probability distributions (when a probabilistic/possibilistic representation of epistemic uncertainty is adopted) and ii) studying the effect of the probabilistic/possibilistic representation of epistemic uncertainty (when the state of dependence between the epistemic parameters is defined). The Dependency Bound Convolution (DBC) approach is then undertaken within a hierarchical setting of hybrid (probabilistic and possibilistic) uncertainty propagation, in order to account for all kinds of (possibly unknown) dependences between the random variables. The analyses are carried out with reference to two toy examples, built in such a way to allow performing a fair quantitative comparison between the methods, and evaluating their rationale and appropriateness in relation to risk analysis.