Tram is classified as a light rail mode of transportation. Tram tracks experience high acceleration and deceleration forces of locomotives and wagons within their service life and also share their route with other vehicles. This results in higher rates of degradation in tram tracks compared to the degradation rate in heavy rail tracks. In this research, gauge deviation is employed as a representative of track geometry irregularities for the predication of the tram track degradation. Data sets used in this research were sourced from Melbourne's tram system. For model development, the data of approximately 250 km of tram tracks are used. Two different models including a regression model and an Artificial Neural Networks (ANN) model have been applied for predicting tram track gauge deviation. According to the results, the performances of the regression models are similar to the ANN models. The determination coefficients of the developed models are above 0.7.