Tram is classified as a light rail mode of transportation. Tram tracks experience high acceleration and deceleration forces of locomotives and wagons within their service life and also share their route with other vehicles. This results in higher rates of degradation in tram tracks compared to the degradation rate in heavy rail tracks. In this research, gauge deviation is employed as a representative of track geometry irregularities for the predication of the tram track degradation. Data sets used in this research were sourced from Melbourne's tram system. For model development, the data of approximately 250 km of tram tracks are used. Two different models including a regression model and an Artificial Neural Networks (ANN) model have been applied for predicting tram track gauge deviation. According to the results, the performances of the regression models are similar to the ANN models. The determination coefficients of the developed models are above 0.7.
Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.