The spectral theory of graphs provides a bridge between classical signal
processing and the nascent field of graph signal processing. In this paper, a
spectral graph analogy to Heisenberg's celebrated uncertainty principle is
developed. Just as the classical result provides a tradeoff between signal
localization in time and frequency, this result provides a fundamental tradeoff
between a signal's localization on a graph and in its spectral domain. Using
the eigenvectors of the graph Laplacian as a surrogate Fourier basis,
quantitative definitions of graph and spectral "spreads" are given, and a
complete characterization of the feasibility region of these two quantities is
developed. In particular, the lower boundary of the region, referred to as the
uncertainty curve, is shown to be achieved by eigenvectors associated with the
smallest eigenvalues of an affine family of matrices. The convexity of the
uncertainty curve allows it to be found to within $\varepsilon$ by a fast
approximation algorithm requiring $O(\varepsilon^{-1/2})$ typically sparse
eigenvalue evaluations. Closed-form expressions for the uncertainty curves for
some special classes of graphs are derived, and an accurate analytical
approximation for the expected uncertainty curve of Erd\H{o}s-R\'enyi random
graphs is developed. These theoretical results are validated by numerical
experiments, which also reveal an intriguing connection between diffusion
processes on graphs and the uncertainty bounds.Comment: 40 pages, 8 figure