The spectral theory of graphs provides a bridge between classical signal
processing and the nascent field of graph signal processing. In this paper, a
spectral graph analogy to Heisenberg's celebrated uncertainty principle is
developed. Just as the classical result provides a tradeoff between signal
localization in time and frequency, this result provides a fundamental tradeoff
between a signal's localization on a graph and in its spectral domain. Using
the eigenvectors of the graph Laplacian as a surrogate Fourier basis,
quantitative definitions of graph and spectral "spreads" are given, and a
complete characterization of the feasibility region of these two quantities is
developed. In particular, the lower boundary of the region, referred to as the
uncertainty curve, is shown to be achieved by eigenvectors associated with the
smallest eigenvalues of an affine family of matrices. The convexity of the
uncertainty curve allows it to be found to within $\varepsilon$ by a fast
approximation algorithm requiring $O(\varepsilon^{-1/2})$ typically sparse
eigenvalue evaluations. Closed-form expressions for the uncertainty curves for
some special classes of graphs are derived, and an accurate analytical
approximation for the expected uncertainty curve of Erd\H{o}s-R\'enyi random
graphs is developed. These theoretical results are validated by numerical
experiments, which also reveal an intriguing connection between diffusion
processes on graphs and the uncertainty bounds.Comment: 40 pages, 8 figure
The classical uncertainty principle provides a fundamental tradeoff in the localization of a signal in the time and frequency domains. In this paper we describe a similar tradeoff for signals defined on graphs. We describe the notions of "spread" in the graph and spectral domains, using the eigenvectors of the graph Laplacian as a surrogate Fourier basis. We then describe how to find signals that, among all signals with the same spectral spread, have the smallest graph spread about a given vertex. For every possible spectral spread, the desired signal is the solution to an eigenvalue problem. Since localization in graph and spectral domains is a desirable property of the elements of wavelet frames on graphs, we compare the performance of some existing wavelet transforms to the obtained bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.