Atmospheric transport, dispersion, and deposition models (ATDMs) can support decisionmaking during nuclear emergencies; however, uncertainties in the ATDM results need to be carefully evaluated. To investigate the uncertainties derived from meteorological forecast inputs, we conducted three-day forecast simulations every day for one year with hypothetical releases of radionuclides (one-hour releases every 6 h) from a nuclear facility. The forecast outputs were compared with the analysis outputs during the same period. The difference between the outputs is treated as the uncertainty in the forecasts and is represented as an angle based on the discrepancy in the plume directions between the analysis and forecast outputs. Using meteorological inputs made by Japan Meteorological Agency, the discrepancy angle (Ang) increased by approximately 10 � per day on an annual average basis. Meanwhile, the Ang values were occasionally 4-5 times higher than the annual average during short time periods. Since the Ang time series show seasonal and diurnal changes, the statistical characteristics likely depend on the geographical and meteorological conditions, as well as the types of meteorological inputs. Additionally, a main factor in the uncertainty is the wind-direction difference between the analysis and forecast outputs on scales of more than or less than 100 km.