This paper proposes a new class of difference methods with intrinsic parallelism for solving the Burgers–Fisher equation. A new class of parallel difference schemes of pure alternating segment explicit-implicit (PASE-I) and pure alternating segment implicit-explicit (PASI-E) are constructed by taking simple classical explicit and implicit schemes, combined with the alternating segment technique. The existence, uniqueness, linear absolute stability, and convergence for the solutions of PASE-I and PASI-E schemes are well illustrated. Both theoretical analysis and numerical experiments show that PASE-I and PASI-E schemes are linearly absolute stable, with 2-order time accuracy and 2-order spatial accuracy. Compared with the implicit scheme and the Crank–Nicolson (C-N) scheme, the computational efficiency of the PASE-I (PASI-E) scheme is greatly improved. The PASE-I and PASI-E schemes have obvious parallel computing properties, which show that the difference methods with intrinsic parallelism in this paper are feasible to solve the Burgers–Fisher equation.