Infrared thermal imaging of the skin has been used for several decades to monitor the temperature distribution of human skin. Abnormalities such as malignancies, inflammation, and infection cause localized increases in temperature which show as hot spots or as asymmetrical patterns in an infrared thermogram. Even though it is nonspecific, infrared thermology is a powerful detector of problems that affect a patient's physiology. While the use of infrared imaging is increasing in many industrial and security applications, it has declined in medicine probably because of the continued reliance on first generation cameras. The transfer of military technology for medical use has prompted this reappraisal of infrared thermology in medicine. Digital infrared cameras have much improved spatial and thermal resolutions, and libraries of image processing routines are available to analyze images captured both statically and dynamically. If thermographs are captured under controlled conditions, they may be interpreted readily to diagnose certain conditions and to monitor the reaction of a patient's physiology to thermal and other stresses. Some of the major areas where infrared thermography is being used successfully are neurology, vascular disorders, rheumatic diseases, tissue viability, oncology (especially breast cancer), dermatological disorders, neonatal, ophthalmology, and surgery.