Multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria are a major worldwide public health problem. In the last decades, resistance to last-resort antibiotics such as polymyxin B (PB) have been increasingly observed among these superbugs, compromising the effectiveness of antimicrobial therapy. The present study aimed (i) to assess the ultrapure Cannabidiol (CBD) antibacterial activity against a broad diversity of Gram-negative (GN) and Gram-positive (GP) bacteria (44 different species, 95 strains), comprising standard strains and clinical isolates, and (ii) to investigate the antibacterial activity of the combination CBD + PB against GN bacteria, including chromosomal- and plasmid-acquired PB-resistant and intrinsically PB-resistant GNB. We evaluated CBD in vitro antibacterial activity using the standard broth microdilution method, and the antibacterial activity of the combination CBD + PB was screened using the standard broth microdilution and confirmed by checkerboard assay. CBD exhibited antibacterial activity against different GP bacterial species, lipooligosaccharide (LOS)-expressing GN diplococcus (GND) (Neisseria gonorrhoeae, Neisseria meningitidis, and Moraxella catarrhalis), and Mycobacterium tuberculosis. The combination CBD + PB exhibited antibacterial activity against PB-resistant GNB (e.g., Klebsiella pneumoniae) as well as additive and/or synergistic effect against LOS-expressing GND. The antibacterial activity of the combination CBD + PB against Pseudomonas aeruginosa and plasmid-mediated colistin-resistant (MCR-1) E. coli strains could be only demonstrated in the presence of phenylalanine-arginine-beta-naphthylamide (PA-beta-N). In conclusion, our results show promising translational potential of the combination CBD + PB against MDR and XDR GNB, including PB-resistant K. pneumoniae, highlighting its potential as a rescue treatment for life-threatening infections caused by these superbugs.